ตอบ 3
อธิบาย การเคลื่อนที่ (อังกฤษ: motion) คือ การเปลี่ยนตำแหน่งของวัตถุในช่วงเวลาหนึ่ง ซึ่งวัดโดยผู้สังเกตที่เป็นส่วนหนึ่งของกรอบอ้างอิง เมื่อปลายคริสต์ศตวรรษที่ 19 เซอร์ไอแซก นิวตัน ได้เสนอกฎการเคลื่อนที่ของนิวตันในหนังสือ Principia ของเขา ซึ่งต่อมาได้กลายเป็นกฎพื้นฐานของฟิสิกส์ดั้งเดิม การคำนวณการเคลื่อนที่ของวัตถุต่างๆ โดยใช้ฟิสิกส์ดั้งเดิมนั้นประสบความสำเร็จมาก จนกระทั่งนักฟิสิกส์เริ่มศึกษาเกี่ยวกับสิ่งที่เคลื่อนที่ด้วยความเร็วสูงมาก
นักฟิสิกส์พบว่า ฟิสิกส์ดั้งเดิมไม่สามารถคำนวณสิ่งที่เคลื่อนที่ด้วยความเร็วสูงได้แม่นยำ เพื่อแก้ปัญหานี้ อองรี ปวงกาเร และ อัลเบิร์ต ไอน์สไตน์ได้เสนอทฤษฎีอธิบายการเคลื่อนที่ของวัตถุ เพื่อใช้แทนของกฎของนิวตัน กฎการเคลื่อนที่ของนิวตันกำหนดให้อวกาศและเวลาเป็นสิ่งสัมบูรณ์ แต่ทฤษฎีไอน์สไตน์กับปวงกาเร ซึ่งเรียกว่า ทฤษฎีสัมพัทธภาพพิเศษ กำหนดให้ค่าเหล่านี้เป็นสิ่งสัมพัทธ์ ซึ่งต่อมา ทฤษฎีสัมพัทธภาพพิเศษก็เป็นที่ยอมรับในการอธิบายการเคลื่อนที่ เพราะทำนายผลลัพธ์ได้แม่นยำกว่า อย่างไรก็ตาม ในทางปฏิบัติ กฎการเคลื่อนที่ของนิวตันยังเป็นที่ใช้กันอยู่ โดยเฉพาะงานด้านฟิสิกส์ประยุกต์และงานวิศวกรรม เพราะสามารถคำนวณได้ง่ายกว่าทฤษฎีสัมพัทธภาพพิเศษ
ที่มา: http://th.wikipedia.org/wiki/%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B9%80%E0%B8%84%E0%B8%A5%E0%B8%B7%E0%B9%88%E0%B8%AD%E0%B8%99%E0%B8%97%E0%B8%B5%E0%B9%88
ตอบ 2
อธิบาย อัตราเร็ว (สัญลักษณ์: v) คืออัตราของ การเคลื่อนที่ หรือ อัตราการเปลี่ยนแปลงของตำแหน่งก็ได้ หลายครั้งมักเขียนในรูป ระยะทาง d ที่เคลื่อนที่ไปต่อ หน่วย ของ เวลา t
อัตราเร็ว เป็นปริมาณสเกลาร์ที่มีมิติเป็นระยะทาง/เวลา ปริมาณเวกเตอร์ที่เทียบเท่ากับอัตราเร็วคือความเร็ว อัตราเร็ววัดในหน่วยเชิงกายภาพเดียวกับความเร็ว แต่อัตราเร็วไม่มีองค์ประกอบของทิศทางแบบที่ความเร็วมี อัตราเร็วจึงเป็นองค์ประกอบส่วนที่เป็นขนาดของความเร็ว
ในรูปสัญลักษณ์ทางคณิตศาสตร์ อัตราเร็วคือ
- เมตรต่อวินาที, (สัญลักษณ์ m/s) , ระบบหน่วย SI
- กิโลเมตรต่อชั่วโมง, (สัญลักษณ์ km/h)
- ไมล์ต่อชั่วโมง, (สัญลักษณ์ mph)
- นอต (ไมล์ทะเลต่อชั่วโมง, สัญลักษณ์ kt)
- มัค เมื่อมัค 1 เท่ากับ อัตราเร็วเสียง มัค n เท่ากับ n เท่าของอัตราเร็วเสียง
-
- มัค 1 ≈ 343 m/s ≈ 1235 km/h ≈ 768 mi/h (ดู อัตราเร็วเสียง สำหรับข้อมูลเพิ่มเติม)
- อัตราเร็วแสง ใน สุญญากาศ (สัญลักษณ์ c) เป็นหนึ่งใน หน่วยธรรมชาติ
-
- c = 299,792,458 m/s
- การเปลี่ยนหน่วยที่สำคัญ
-
- 1 m/s = 3.6 km/h
- 1 mph = 1.609 km/h
- 1 knot = 1.852 km/h = 0.514 m/s
วัตถุที่เคลื่อนที่ไปตามแนวราบ พร้อม ๆ กับแนวดิ่ง (เช่น อากาศยาน) จะแยกประเภทเป็น forward speed กับ climbing speed
ที่มา: http://th.wikipedia.org/wiki/%E0%B8%AD%E0%B8%B1%E0%B8%95%E0%B8%A3%E0%B8%B2%E0%B9%80%E0%B8%A3%E0%B9%87%E0%B8%A7
ตอบ 4
อธิบาย การเคลื่อนที่แนวดิ่ง ก็ไม่มีไรมาก ทำเหมือนตอนทำการเคลื่อนที่แนวตรงแหละ เพียงแต่มีข้อที่ต้องระลึกไว้ ในการคำนวณคือ
1.การตกเสรี ความเร่งคือ g เสมอ (จะเป็น 9.8 m/s2 หรือ 10 m/s2 แล้วแต่โจทย์กำหนด)
2.ที่จุดสูงสุด ความเร็วจะต้องเป็ง 0 (สังเกตุจากเมื่อเราโยนวัตถุขึ้นไป พอใกล้ๆ จะสูงสุด มันจะช้าลง พอสูงสุด มันจะนิ่ง แป๊ปนึง นะครับ)
3.อย่าลืมกำหนดทิศทางเวลาคำนวน ที่จะสะดวกที่สุดก็คือ ขึ้นเป็น + ลงเป็นลบ ให้คงค่านี้ไว้แล้วจะไม่งง(แต่ถ้าเราโปรพอแล้ว ก็อาจจะกำหนดว่า ให้ทิศเดียวกะ U เป็น + ก็ได้ ตรงข้ามกับ U เป็น - หมด
อย่าลืมว่าการคิดในนี้ต้องใช้การกระจัด เป็นหลัก ถ้า วัตถุลอยขึ้นแล้วตกถึงพื้น แสดงว่าการกระจัดเป็น 0 (ห้ามใช้ระยะทางคิดเป็นอันขาด)
นอกนั้นก็ไม่มีไรแล้วอ่ะ เราจะเน้นตัวอย่างโจทย์แล้วกัน เพราะมันจะรวมกับ การเคลื่อนที่แนวเส้นตรงได้ด้วย (และบทการเคลื่อนที่แนวดิ่งนี้ ก็จะเป็นพื้นฐานของ โปรเจคไตส์อีก มันจะเกี่ยวเนื่องกันมาก เพราะงั้น ถ้าไม่เข้าใจตั้งแต่เรื่องแรก แน่นอน พังยกแถบ)
1.โยนวัตถุขึ้นไปในอากาศความเร็วต้นเป็น 20 m/s จะขึ้นไปได้สูงสุดเท่าไหร่ (g = 10 m/s)
ถ้าหัดทำใหม่ๆ ควรจะเขียนว่ารู้อะไรบ้าง ลิสต์มาทีละอย่าง เช่นข้อนี้
รู้ 1. ความเร่ง ค่า g ไง 2. ความเร็วตัน U 3.ความเร็วปลาย จุดสูงสุดเป็น 0 นะ(โจทย์มักจะชอบซ่อนเอาไว้ให้งงเล่น)
เห็นมะ รู้ a v u จะหา s ก็น่าจะใช้ v2 = u2 + 2as ซึ่งเราจะสามารถหาคำตอบได้เลยจากสมการเดียว
ระวังว่า a จะเป็นลบ เพราะทิศมันลงนะครับ จะได้ s คือ 20 m
หรือไม่ ทำอีกทางก็ได้ ใช้ v = u+at ใช้ v เป็น 0 u เป็น 20 a เป็น -10 (ทิศลง)
แก้หาเวลาได้ 2 วินาที แล้วเอาไปแทนในนี้ s = ut + 1/2at2 คำตอบที่ได้จะเท่ากันคือ 20 m
ถ้าเกิดสงสัยว่าทำไมลงต้องเป็นลบ ก็อยากจะบอกว่ามันทำให้จำง่ายดี แต่ถ้าเราอยากเล่นแผลงๆ เอาขึ้นเป็นลบก็ได้ จะได้ทำตอบเหมือนกัน
ลองอีกข้อ โยนวัตถุขึ้นไปในอากาศความเร็วต้นเป็น 20 m/s นานเท่าไหร่จึงจะตกถึงพื้นข้อนี้น่าจะใช้ s = ut + 1/2at2 เพราะรู้ทั้ง a u และ s (อย่าลืมว่า s เป็นการกระจัดเพราะงั้น ขึ้นไป แล้วตกลงมา การกระจัดจึงเป็น 0)
แทนค่าลงไป แล้วแก้สมการ 0 = 20t - 5t2 จะได้ว่า 5t(t-4) = 0 เพราะงั้น t = 0,4
แต่ t = 0 เนี่ยคือเวลาที่มันอยู่บนพื้น พอผ่านไป 0 วิมันก็อยู่บนพื้น เพราะงั้นไร้สาระ ไม่ใช้ แต่ให้ใช้ 4 วินาที
(หลักแบบนี้ขอให้เรียนรู้ไว้ เพราะมันจะไปปรากฏอยู่ในบทหน้า โปรเจคไตน์)
โจทย์ง่ายผ่านไปแล้ว ลองโจทย์ยากมั่ง โยนวัตถุขึ้นไปมีความเร็วต้นเป็น u รอให้ขึ้นไปถึงจุดสูงสุด แล้วจึงโยน วัตถุขึ้นไป ความเร็วต้น u อีก ถามว่า วัตถุ 2 ก้อนจะตกลงมาชนกันที่ความสูงเท่าไหร่(กำหนดให้ ความเร่งแนวดิ่งคือ g) ตอบในเทอม g และ u ครับทำลงบอร์ดทีนะ ขอร้อง เราอยากเห็นคนลองคิดอ่ะ ผิดถูกไม่ว่ากัน ลองทำหน่อย
ที่มา: http://writer.dek-d.com/Writer/story/viewlongc.php?id=134437&chapter=11
ตอบ 3
อธิบาย
| การ |
| พลัง |
ตอบ 2
อธิบาย พิจารณา
ตอบ 4
อธิบาย พอมีความเที่ยงตรงพอสมควร สำหรับการทำงานในระบบ ความถี่ต่ำ เภทที่ใช้ความถี่ต่ำในระบบที่ใช้ไฟ 50 หรือ 60 Hz (พวกมอเตอร์ทั้งหลาย)
การเพิ่มหรือลดกำลังไฟฟ้าเข้าสู่ระบบจะมีทั้งการเพิ่มแรงดัน ด้วยการเพิ่ม Exciter และ เพิ่มความเร็วรอบ โดยเพิ่มรอบให้ไฟออกมากขึ้น ซึ่งจะจ่ายไฟจากตัวนั้นมากขึ้นแต่ความถี่ก็จะสูงขึ้น หากมีเครื่องกำเนิดไฟฟ้าเพียง 2 ตัว การถ่ายโหลด ที่จะทำให้ความถี่ไม่เปลียน
คือเร่งความเร็วตัวที่จะเอาไปแทนขึ้น ขณะเดียวกับลดความเร็วของตัวที่จะปลดออก ลง ความถี่จึงจะยังคงที่
ในระบบใหญ่ๆก็คงเป็นลักษณะเดียวกัน แต่เครื่องกำเนิดอยู่คนละแห่งในการทำให้สำพันธ์กันจึงไม่ใช่ง่ายนัก
และยังขึ้นกับจำนวนภาระ (Load) ที่ใช้ไฟอยู่ด้วย หากมีการเปลียนแปลงภาระมากๆในเวลาเดียวกัน ก็จะทำให้ความถี่ตกลงไปด้วย
ในห้องควบคุมจะมีนาฬิกาสองเรือนที่เดินด้วยมอเตอร์แบบความเร็วคงที่(เปลี่ยนตามความถี่)เรือนหนึ่ง
และเดินด้วยแร่ Crytal ที่เที่ยงตรงกว่าและจะคอยปรับความถี่ของระบบให้นาฬิกาสองเรือนเดินตรงกัน ไม่ให้ผิดแม้แต่เสี้ยวของวินาที
ทำให้ค่าเฉลี่ยของระบบในระยะยาวๆเที่ยงตรง ใช้ได้ เสมอ
สรุปคงไม่ดีพอที่จะไปใช้สอบเทียบกับเครื่องมือที่ใช้ความถี่ สูงๆได้
เพราะ +/- 0.01 % ของ 50 Hz ก็เพียง เล็กน้อยเท่านั้น แต่หาก 0.01 % ของความถี่สูง เช่น 5 ล้าน Hz ก็คงมากโขอยู่
ที่มา: http://www.vcharkarn.com/include/vcafe/showkratoo.php?Pid=31704
ตอบ 3
อธิบาย การเคลื่อนที่แบบโพรเจกไทล์ คือการเคลื่อนที่ในแนวโค้งพาราโบลา ซึ่งเกิดจากวัตถุได้รับความเร็วใน 2 แนวพร้อมกัน คือ ความเร็วในแนวราบและความเร็วในแนวดิ่ง ตัวอย่างของการเคลื่อนที่แบบโพรเจกไทล์ ได้แก่ ดอกไม้ไฟ น้ำพุ การเคลื่อนที่ของลูกบอลที่ถูกเตะขึ้นจากพื้น การเคลื่อนที่ของนักกระโดดไกล สำหรับในบทเรียนนี้เราจะศึกษาในเรื่องลักษณะของการเคลื่อนที่แบบโพรเจกไทล์ การคำนวณหาปริมาณที่เกี่ยวข้องกับการเคลื่อนที่แบบโพรเจคไทด์ , โพรเจคไทด์ในแนวราบ , โพรเจกไทล์ในแนวดิ่ง หลังจากนั้นนักเรียนจะได้ทดสอบความเข้าใจกับแบบฝีกหัด และแบบทดสอบ
ที่มา: http://www.rmutphysics.com/physics/oldfront/circular-motion/projectile/pro1.htm
ตอบ 3
อธิบาย กรณีที่วัตถุเคลื่อนที่อัตราเร็วที่ไม่สม่ำเสมอ หรือความเร็วไม่สม่ำเสมอ วัตถุมีค่าความเร่ง
ความหมายของอัตราเร่งหรือความเร่ง คือ อัตราเร็วหรือ ความเร็วที่เปลี่ยนไปในหนึ่งหน่วยเวลาที่วัตถุมีการเคลื่อนที่
การคำนวณหาค่าอัตราเร่ง ทำได้โดยหาอัตราเร็วที่เปลี่ยนไปโดยใช้อัตราเร็วสุดท้ายของการเคลื่อนที่ลบด้วยอัตราเร็วเริ่มต้นของการเคลื่อนที่ หารด้วยเวลาที่ใช้เปลี่ยนค่าอัตราเร็วนั้น เช่น
กำหนดให้
เป็นอัตราเร็วเริ่มต้นของการเคลื่อนที่
เป็นอัตราเร็วสุดท้ายของการเคลื่อนที่
เป็นเวลาขณะที่เริ่มต้นการเคลื่อนที่
เป็นเวลาในช่วงสุดท้ายของการเคลื่อนที
เป็นค่าอัตราเร่งของการเคลื่อนที่
สมการแสดงความสัมพันธ์ คือ
หรือ
ถ้า
คือ ช่วงเวลาที่มีการเปลี่ยนค่าอัตราเร็ว (สมการที่ 2)
สำหรับสูตรในการคำนวณหาค่าความเร่ง ใช้สูตรเดียวกัน เพียงแต่ค่าความเร็วที่เปลี่ยนไปเป็นปริมาณสเกลลาร์
สมการแสดงความสัมพันธ์ คือ
หรือ
สำหรับสูตรในการคำนวณหาค่าความเร่ง ใช้สูตรเดียวกัน เพียงแต่ค่าความเร็วที่เปลี่ยนไปเป็นปริมาณสเกลลาร์
ตอบ 3
ถ้าเวลาที่ใช้น้อยมาก เข้าใกล้ศูนย์ อัตราเร็วเฉลี่ยจะเท่ากับอัตราเร็วขณะใดขณะหนึ่ง
ตอบ 4
อธิบาย การค้นพบประจุไฟฟ้านั้นสามารถสืบย้อนกลับไปได้ถึงยุคกรีกโบราณ โดยในช่วง 600 ปีก่อนคริสต์ศักราช เทลีส แห่งไมเลตัส นักปราชญ์ชาวกรีก ได้กล่าวถึงการสะสมของประจุไฟฟ้าจากการขัดถูวัสดุหลายชนิด เช่น อำพัน กับ ผ้าขนสัตว์ วัสดุที่สะสมประจุเหล่านี้สามารถดึงดูดวัตถุที่มีน้ำหนักเบา เช่น เส้นผม ได้ ยิ่งไปกว่านั้น หากวัสดุเหล่านี้ถูกขัดถูเป็นเวลานานพอ จะทำให้เกิดประกายไฟ ซึ่งเป็นปรากฏการณ์ที่เกิดจาก ไฟฟ้าจากการขัดถู (triboelectric effect) คำภาษาอังกฤษ electricity มาจากคำในภาษากรีก ηλεκτρον (electron) ซึ่งหมายถึง อำพัน
ในปี ค.ศ. 1733 ดูเฟย์ (C. F. Du Fay) ได้เสนอ [1] ว่าไฟฟ้านั้นมีอยู่ 2 ชนิดซึ่งหักล้างกัน โดยนำเสนอในรูปทฤษฎีของของไหลสองชนิด เขาได้เสนอว่าเมื่อถูแก้วกับผ้าไหม แก้วจะมีประจุที่เรียกว่า ไฟฟ้าวิเทรียส (vitreous electricity) ส่วนเมื่อถูอำพันกับผ้าขนสัตว์ อำพันจะมีประจุที่เรียกว่า ไฟฟ้าเรซินัส (resinous electricity)
ต่อมาในช่วงคริสต์ศตวรรษที่ 18 การศึกษาเกี่ยวกับไฟฟ้านั้นเริ่มแพร่หลายมากขึ้น โดยที่เบนจามิน แฟรงกลิน ซึ่งเป็นหนึ่งในผู้เชี่ยวชาญในยุคนั้นไม่เห็นด้วยกับทฤษฎีของไหลสองชนิด เขาได้ตั้งข้อโต้แย้งให้การสนับสนุน ทฤษฎีของไหลชนิดเดียว โดยจินตนาการไฟฟ้าเป็นเสมือนของไหลที่ไม่สามารถมองเห็นได้ และมีอยู่ในสสารทุกชนิด เช่น ในกรณีของ ไหไลเดน (Leyden jar) นั้น เนื้อแก้วเป็นส่วนที่เก็บสะสมประจุ เขาได้ตั้งสมมุติฐานว่า การขัดถูผิวของวัตถุฉนวนต่างชนิด ทำให้ของไหลที่ว่านี้เกิดการไหลเปลี่ยนตำแหน่งเกิดเป็นกระแสไฟฟ้า นอกจากนั้นแล้วเขายังได้ตั้งสมมุติฐานว่า หากวัตถุมีของเหลวนี้น้อยเกินไปจะทำให้มีค่าประจุเป็นลบ ถ้าหากมีมากเกินไปจะมีค่าประจุเป็นบวก ด้วยเหตุผลที่ไม่เป็นที่แน่ชัด แฟรงกลินได้ ระบุว่า ค่าประจุบวก คือ ไฟฟ้าวิเทรียส และ ค่าประจุลบ คือ ไฟฟ้าเรซินัส ซึ่ง วิลเลียม วัตสันก็ได้ค้นพบข้อสรุปเดียวกันนี้ในช่วงเวลาที่ใกล้เคียงกัน
แบบจำลองของ แฟรงกลินและวัตสัน นั้นใกล้เคียงกับแบบจำลองในปัจจุบันซึ่งมีความซับซ้อนมากกว่า ในปัจจุบันเราทราบว่าสสารนั้นจริงๆ แล้วประกอบด้วยอนุภาคที่มีประจุอยู่หลายชนิด เช่น โปรตอน และ อิเล็กตรอน และกระแสไฟฟ้านั้นก็เกิดได้หลายแบบ เช่น เกิดจากการไหลของอิเล็กตรอน เกิดจากการไหลของสิ่งที่เรียกว่า "โฮล" (ของอิเล็กตรอน) ซึ่งทำตัวเสมือนประจุบวก และในสารละลายอิเล็กโตรไลท์นั้น เกิดจากการไหลของอนุภาคที่เรียกว่า อิออน สองชนิดคือ อิออนบวก และ อิออนลบ เพื่อความสะดวกในการทำงาน ผู้ที่ทำงานเกี่ยวกับไฟฟ้าในปัจจุบันนั้นก็ยังใช้แบบจำลองกระแสไฟฟ้าของแฟรงกลิน โดยจำลองกระแสไฟฟ้าเป็นการไหลของประจุบวกเท่านั้น (เรียกว่า กระแสแบบดั้งเดิม) ถึงแม้แบบจำลองอย่างง่ายนี้ช่วยลดความซับซ้อนในการทำความเข้าใจหลักการทางไฟฟ้า และ การคำนวณ ต่างๆ แต่ก็ทำให้มองข้ามข้อเท็จจริงที่ในสารตัวนำบางชนิด (เช่น อิเล็กโตรไลท์ สารกึ่งตัวนำ และ พลาสมา) นั้นมีการไหลของอนุภาคที่มีประจุอยู่หลายประเภท และนอกจากนั้นแล้ว ทิศทางการไหลของกระแสแบบดั้งเดิมนี้ ก็สวนทางกับทิศทางการไหลของอิเล็กตรอนในโลหะซึ่งใช้เป็นตัวนำ ซึ่งทำให้เกิดความสับสนสำหรับผู้เริ่มศึกษาอิเล็กทรอนิกส์
ในปี ค.ศ. 1733 ดูเฟย์ (C. F. Du Fay) ได้เสนอ [1] ว่าไฟฟ้านั้นมีอยู่ 2 ชนิดซึ่งหักล้างกัน โดยนำเสนอในรูปทฤษฎีของของไหลสองชนิด เขาได้เสนอว่าเมื่อถูแก้วกับผ้าไหม แก้วจะมีประจุที่เรียกว่า ไฟฟ้าวิเทรียส (vitreous electricity) ส่วนเมื่อถูอำพันกับผ้าขนสัตว์ อำพันจะมีประจุที่เรียกว่า ไฟฟ้าเรซินัส (resinous electricity)
ต่อมาในช่วงคริสต์ศตวรรษที่ 18 การศึกษาเกี่ยวกับไฟฟ้านั้นเริ่มแพร่หลายมากขึ้น โดยที่เบนจามิน แฟรงกลิน ซึ่งเป็นหนึ่งในผู้เชี่ยวชาญในยุคนั้นไม่เห็นด้วยกับทฤษฎีของไหลสองชนิด เขาได้ตั้งข้อโต้แย้งให้การสนับสนุน ทฤษฎีของไหลชนิดเดียว โดยจินตนาการไฟฟ้าเป็นเสมือนของไหลที่ไม่สามารถมองเห็นได้ และมีอยู่ในสสารทุกชนิด เช่น ในกรณีของ ไหไลเดน (Leyden jar) นั้น เนื้อแก้วเป็นส่วนที่เก็บสะสมประจุ เขาได้ตั้งสมมุติฐานว่า การขัดถูผิวของวัตถุฉนวนต่างชนิด ทำให้ของไหลที่ว่านี้เกิดการไหลเปลี่ยนตำแหน่งเกิดเป็นกระแสไฟฟ้า นอกจากนั้นแล้วเขายังได้ตั้งสมมุติฐานว่า หากวัตถุมีของเหลวนี้น้อยเกินไปจะทำให้มีค่าประจุเป็นลบ ถ้าหากมีมากเกินไปจะมีค่าประจุเป็นบวก ด้วยเหตุผลที่ไม่เป็นที่แน่ชัด แฟรงกลินได้ ระบุว่า ค่าประจุบวก คือ ไฟฟ้าวิเทรียส และ ค่าประจุลบ คือ ไฟฟ้าเรซินัส ซึ่ง วิลเลียม วัตสันก็ได้ค้นพบข้อสรุปเดียวกันนี้ในช่วงเวลาที่ใกล้เคียงกัน
แบบจำลองของ แฟรงกลินและวัตสัน นั้นใกล้เคียงกับแบบจำลองในปัจจุบันซึ่งมีความซับซ้อนมากกว่า ในปัจจุบันเราทราบว่าสสารนั้นจริงๆ แล้วประกอบด้วยอนุภาคที่มีประจุอยู่หลายชนิด เช่น โปรตอน และ อิเล็กตรอน และกระแสไฟฟ้านั้นก็เกิดได้หลายแบบ เช่น เกิดจากการไหลของอิเล็กตรอน เกิดจากการไหลของสิ่งที่เรียกว่า "โฮล" (ของอิเล็กตรอน) ซึ่งทำตัวเสมือนประจุบวก และในสารละลายอิเล็กโตรไลท์นั้น เกิดจากการไหลของอนุภาคที่เรียกว่า อิออน สองชนิดคือ อิออนบวก และ อิออนลบ เพื่อความสะดวกในการทำงาน ผู้ที่ทำงานเกี่ยวกับไฟฟ้าในปัจจุบันนั้นก็ยังใช้แบบจำลองกระแสไฟฟ้าของแฟรงกลิน โดยจำลองกระแสไฟฟ้าเป็นการไหลของประจุบวกเท่านั้น (เรียกว่า กระแสแบบดั้งเดิม) ถึงแม้แบบจำลองอย่างง่ายนี้ช่วยลดความซับซ้อนในการทำความเข้าใจหลักการทางไฟฟ้า และ การคำนวณ ต่างๆ แต่ก็ทำให้มองข้ามข้อเท็จจริงที่ในสารตัวนำบางชนิด (เช่น อิเล็กโตรไลท์ สารกึ่งตัวนำ และ พลาสมา) นั้นมีการไหลของอนุภาคที่มีประจุอยู่หลายประเภท และนอกจากนั้นแล้ว ทิศทางการไหลของกระแสแบบดั้งเดิมนี้ ก็สวนทางกับทิศทางการไหลของอิเล็กตรอนในโลหะซึ่งใช้เป็นตัวนำ ซึ่งทำให้เกิดความสับสนสำหรับผู้เริ่มศึกษาอิเล็กทรอนิกส์
คุณสมบัติ
นอกจากคุณสมบัติทางแม่เหล็กไฟฟ้าที่กล่าวข้างต้นแล้ว ประจุยังเป็นคุณสมบัติที่ไม่เปลี่ยนแปลงสัมพัทธ์ (ตามทฤษฎีสัมพัทธภาพ) คือ หากอนุภาคมีประจุ q ไม่ว่าประจุนั้นจะเคลื่อนที่ด้วยความเร็วเท่าไร ก็จะยังมีประจุ q คุณสมบัตินี้ได้รับการยืนยันโดยการแสดงให้เห็ว่า ค่าประจุในหนึ่งนิวเคลียสของฮีเลียม (มี 2 โปรตอน และ 2 นิวตรอนในนิวเคลียสของฮีเลียม และเคลื่อนที่ไปมาด้วยความเร็วสูง) มีค่าเท่ากับประจุของนิวเคลียส 2 นิวเคลียสของดิวเทอเรียม (ซึ่งมี โปรตอน และ นิวตรอน อย่างละหนึ่งตัวในนิวเคลียส และ เคลื่อนที่ด้วยความเร็วที่ต่ำกว่าที่อยู่ในนิวเคลียสของฮีเลียมมาก)
กฎการอนุรักษ์ของประจุ
ประจุทั้งหมดของระบบโดดเดี่ยว (isolated system) มีค่าคงที่เสมอ โดยไม่ขึ้นกับการเปลี่ยนแปลงของประจุภายในระบบ กฎดังกล่าวเป็นจริงในทุกกระบวนการทางฟิสิกส์ และสามารถเขียนในรูปสมการทางคณิตศาสตร์ได้จากสมการของแมกซ์เวลล์ เรียก สมการของความต่อเนื่อง (continuity equation) ซึ่งระบุว่า การเปลี่ยนแปลงรวมของ ความหนาแน่นประจุ (charge density) ρ ในปริมาตรV มีค่าเท่ากับความหนาแน่นกระแส(current density) J รวม ที่ผ่านพื้นผิว S ของปริมาตรนั้น ซึ่งก็คือกระแส I:











ประเมินตนเอง เต็ม 90 คะแนน ให้ 87 คะแนน
ตอบลบคะแนนเต็ม 90 ให้ 89.5 คะแนน
ตอบลบรวม 2 คน เต็ม 180 คะแนน ได้ 176.5 คะแนน
ตอบลบหาร 2 เต็ม 90 คะแนน ได้ 88.25