กิจกรรม 19 มกราคม 2554













ตอบ 3
อธิบาย การเคลื่อนที่ (อังกฤษ: motion) คือ การเปลี่ยนตำแหน่งของวัตถุในช่วงเวลาหนึ่ง ซึ่งวัดโดยผู้สังเกตที่เป็นส่วนหนึ่งของกรอบอ้างอิง เมื่อปลายคริสต์ศตวรรษที่ 19 เซอร์ไอแซก นิวตัน ได้เสนอกฎการเคลื่อนที่ของนิวตันในหนังสือ Principia ของเขา ซึ่งต่อมาได้กลายเป็นกฎพื้นฐานของฟิสิกส์ดั้งเดิม การคำนวณการเคลื่อนที่ของวัตถุต่างๆ โดยใช้ฟิสิกส์ดั้งเดิมนั้นประสบความสำเร็จมาก จนกระทั่งนักฟิสิกส์เริ่มศึกษาเกี่ยวกับสิ่งที่เคลื่อนที่ด้วยความเร็วสูงมาก
นักฟิสิกส์พบว่า ฟิสิกส์ดั้งเดิมไม่สามารถคำนวณสิ่งที่เคลื่อนที่ด้วยความเร็วสูงได้แม่นยำ เพื่อแก้ปัญหานี้
อองรี ปวงกาเร และ อัลเบิร์ต ไอน์สไตน์ได้เสนอทฤษฎีอธิบายการเคลื่อนที่ของวัตถุ เพื่อใช้แทนของกฎของนิวตัน กฎการเคลื่อนที่ของนิวตันกำหนดให้อวกาศและเวลาเป็นสิ่งสัมบูรณ์ แต่ทฤษฎีไอน์สไตน์กับปวงกาเร ซึ่งเรียกว่า ทฤษฎีสัมพัทธภาพพิเศษ กำหนดให้ค่าเหล่านี้เป็นสิ่งสัมพัทธ์ ซึ่งต่อมา ทฤษฎีสัมพัทธภาพพิเศษก็เป็นที่ยอมรับในการอธิบายการเคลื่อนที่ เพราะทำนายผลลัพธ์ได้แม่นยำกว่า อย่างไรก็ตาม ในทางปฏิบัติ กฎการเคลื่อนที่ของนิวตันยังเป็นที่ใช้กันอยู่ โดยเฉพาะงานด้านฟิสิกส์ประยุกต์และงานวิศวกรรม
เพราะสามารถคำนวณได้ง่ายกว่าทฤษฎีสัมพัทธภาพพิเศษ
ที่มา: http://th.wikipedia.org/wiki/%E0%B8%81%E0%B8%B2%E0%B8%A3%E0%B9%80%E0%B8%84%E0%B8%A5%E0%B8%B7%E0%B9%88%E0%B8%AD%E0%B8%99%E0%B8%97%E0%B8%B5%E0%B9%88








ตอบ 2
อธิบาย   อัตราเร็ว (สัญลักษณ์: v) คืออัตราของ การเคลื่อนที่ หรือ อัตราการเปลี่ยนแปลงของตำแหน่งก็ได้ หลายครั้งมักเขียนในรูป ระยะทาง d ที่เคลื่อนที่ไปต่อ หน่วย ของ เวลา t
อัตราเร็ว เป็นปริมาณสเกลาร์ที่มีมิติเป็นระยะทาง/เวลา ปริมาณเวกเตอร์ที่เทียบเท่ากับอัตราเร็วคือความเร็ว อัตราเร็ววัดในหน่วยเชิงกายภาพเดียวกับความเร็ว แต่อัตราเร็วไม่มีองค์ประกอบของทิศทางแบบที่ความเร็วมี อัตราเร็วจึงเป็นองค์ประกอบส่วนที่เป็นขนาดของความเร็ว
ในรูปสัญลักษณ์ทางคณิตศาสตร์ อัตราเร็วคือ
v = \frac {d}{t}
หน่วยของอัตราเร็ว ได้แก่
มัค 1 ≈ 343 m/s ≈ 1235 km/h ≈ 768 mi/h (ดู อัตราเร็วเสียง สำหรับข้อมูลเพิ่มเติม)
c = 299,792,458 m/s
  • การเปลี่ยนหน่วยที่สำคัญ
1 m/s = 3.6 km/h
1 mph = 1.609 km/h
1 knot = 1.852 km/h = 0.514 m/s
ยานพาหนะต่าง ๆ มักมี speedometer สำหรับวัดอัตราเร็ว
วัตถุที่เคลื่อนที่ไปตามแนวราบ พร้อม ๆ กับแนวดิ่ง (เช่น อากาศยาน) จะแยกประเภทเป็น forward speed กับ climbing speed
ที่มา: http://th.wikipedia.org/wiki/%E0%B8%AD%E0%B8%B1%E0%B8%95%E0%B8%A3%E0%B8%B2%E0%B9%80%E0%B8%A3%E0%B9%87%E0%B8%A7










ตอบ 4
อธิบาย การเคลื่อนที่แนวดิ่ง ก็ไม่มีไรมาก ทำเหมือนตอนทำการเคลื่อนที่แนวตรงแหละ เพียงแต่มีข้อที่ต้องระลึกไว้ ในการคำนวณคือ
1.การตกเสรี ความเร่งคือ g เสมอ (จะเป็น 9.8 m/s2 หรือ 10 m/s2 แล้วแต่โจทย์กำหนด)
2.ที่จุดสูงสุด ความเร็วจะต้องเป็ง 0 (สังเกตุจากเมื่อเราโยนวัตถุขึ้นไป พอใกล้ๆ จะสูงสุด มันจะช้าลง พอสูงสุด มันจะนิ่ง แป๊ปนึง นะครับ)
3.อย่าลืมกำหนดทิศทางเวลาคำนวน ที่จะสะดวกที่สุดก็คือ ขึ้นเป็น + ลงเป็นลบ ให้คงค่านี้ไว้แล้วจะไม่งง(แต่ถ้าเราโปรพอแล้ว ก็อาจจะกำหนดว่า ให้ทิศเดียวกะ U เป็น + ก็ได้ ตรงข้ามกับ U เป็น - หมด

อย่าลืมว่าการคิดในนี้ต้องใช้การกระจัด เป็นหลัก ถ้า วัตถุลอยขึ้นแล้วตกถึงพื้น แสดงว่าการกระจัดเป็น 0 (ห้ามใช้ระยะทางคิดเป็นอันขาด)

นอกนั้นก็ไม่มีไรแล้วอ่ะ เราจะเน้นตัวอย่างโจทย์แล้วกัน เพราะมันจะรวมกับ การเคลื่อนที่แนวเส้นตรงได้ด้วย (และบทการเคลื่อนที่แนวดิ่งนี้ ก็จะเป็นพื้นฐานของ โปรเจคไตส์อีก มันจะเกี่ยวเนื่องกันมาก เพราะงั้น ถ้าไม่เข้าใจตั้งแต่เรื่องแรก แน่นอน พังยกแถบ)

1.โยนวัตถุขึ้นไปในอากาศความเร็วต้นเป็น 20 m/s จะขึ้นไปได้สูงสุดเท่าไหร่ (g = 10 m/s)
ถ้าหัดทำใหม่ๆ ควรจะเขียนว่ารู้อะไรบ้าง ลิสต์มาทีละอย่าง เช่นข้อนี้
รู้ 1. ความเร่ง ค่า g ไง 2. ความเร็วตัน U 3.ความเร็วปลาย จุดสูงสุดเป็น 0 นะ(โจทย์มักจะชอบซ่อนเอาไว้ให้งงเล่น)
เห็นมะ รู้ a v u จะหา s ก็น่าจะใช้ v2 = u2 + 2as ซึ่งเราจะสามารถหาคำตอบได้เลยจากสมการเดียว
ระวังว่า a จะเป็นลบ เพราะทิศมันลงนะครับ จะได้ s คือ 20 m

หรือไม่ ทำอีกทางก็ได้ ใช้ v
 = u+at ใช้ v เป็น 0 u เป็น 20 a เป็น -10 (ทิศลง)
แก้หาเวลาได้ 2 วินาที แล้วเอาไปแทนในนี้ s = ut + 1/2at2 คำตอบที่ได้จะเท่ากันคือ 20 m

ถ้าเกิดสงสัยว่าทำไมลงต้องเป็นลบ ก็อยากจะบอกว่ามันทำให้จำง่ายดี แต่ถ้าเราอยากเล่นแผลงๆ เอาขึ้นเป็นลบก็ได้ จะได้ทำตอบเหมือนกัน

ลองอีกข้อ โยนวัตถุขึ้นไปในอากาศความเร็วต้นเป็น 20 m/s นานเท่าไหร่จึงจะตกถึงพื้นข้อนี้น่าจะใช้ s = ut + 1/2at2 เพราะรู้ทั้ง a u และ s (อย่าลืมว่า s เป็นการกระจัดเพราะงั้น ขึ้นไป แล้วตกลงมา การกระจัดจึงเป็น 0)
แทนค่าลงไป แล้วแก้สมการ 0 = 20t - 5t2 จะได้ว่า 5t(t-4) = 0 เพราะงั้น t = 0,4
แต่ t = 0 เนี่ยคือเวลาที่มันอยู่บนพื้น พอผ่านไป 0 วิมันก็อยู่บนพื้น เพราะงั้นไร้สาระ ไม่ใช้ แต่ให้ใช้ 4 วินาที
(หลักแบบนี้ขอให้เรียนรู้ไว้ เพราะมันจะไปปรากฏอยู่ในบทหน้า โปรเจคไตน์)

โจทย์ง่ายผ่านไปแล้ว ลองโจทย์ยากมั่ง โยนวัตถุขึ้นไปมีความเร็วต้นเป็น u รอให้ขึ้นไปถึงจุดสูงสุด แล้วจึงโยน วัตถุขึ้นไป ความเร็วต้น u อีก ถามว่า วัตถุ 2 ก้อนจะตกลงมาชนกันที่ความสูงเท่าไหร่(กำหนดให้ ความเร่งแนวดิ่งคือ g) ตอบในเทอม g และ u ครับทำลงบอร์ดทีนะ ขอร้อง เราอยากเห็นคนลองคิดอ่ะ ผิดถูกไม่ว่ากัน ลองทำหน่อย

ที่มา: http://writer.dek-d.com/Writer/story/viewlongc.php?id=134437&chapter=11











ตอบ 3
อธิบาย
การเคลื่อนที่แบบฮาร์โมนิกอย่างง่าย

คือการที่วัตถุเคลื่อนที่กลับไปมาซ้ำรอยเดิม มักจะใช้สัญญลักษณ์ว่า SHM. ตัวอย่างของการเคลื่อนที่แบบนี้ได้แก่ การเคลื่อนที่ของวัตถุที่ถูกผูกติดไว้กับสปริงในแนวราบ แล้ววัตถุเคลื่อนที่ไปมาตามแรงที่สปริงกระทำต่อวัตถุ ซึ่งเขาจะศึกษาการเคลื่อนที่นี้จากรูปที่ 1
ในรูปที่ 1a ตำแหน่ง x = 0 เป็นตำแหน่งสมดุลของปริง หรือ เป็นตำแหน่งที่สปริงมีความยาวตามปกติ ณ ตำแหน่งนี้สปริงจะไม่ส่งแรงมากระทำต่อวัตถุ ในรูปที่ 1a นี้มีวัตถุมวล m ผูกติดกับสปริง วางอยู่บนพื้นที่ซึ่งไม่มีแรงเสียดทาน ที่ตำแหน่งซึ่งปริงยืดออกจากความยาวปกติเป็นระยะทาง A สปริงจะออกแรงดึงวัตถุมวล m กลับมาอยู่ในตำแหน่งสมดุล x = 0 เรียกแรงที่สปริงกระทำต่อวัตถุนี้ว่าแรงดึงกลับ (Restoring force) ถ้า F เป็นแรงดึงกลับนี้จะได้ว่า
F = -kx -----(1)
แรงดึงกลับมีเครื่องหมายลบ เพราะทิศทางของเวกเตอร์ของแรงกับเวกเตอร์ของการขจัด x มักจะตรงข้ามกันเสมอ ค่า k คือค่านิจของสปริง (spring constant) ในรูปที่ 1 นี้ได้กำหนดให้ทิศทางขวาเป็นบวก ดังนั้นในรูป 1a ตำแหน่ง x = A จึงเป็นบวก ในขณะที่ทิศทางของแรงดึงกลับเป็นลบ และเนื่องจากวัตถุเริ่มเคลื่อนที่ที่ x = A ความเร็วของวัตถุจึงเป็นศูนย์
เมื่อปล่อยให้วัตถุเคลื่อนที่ตามแรงของสปริง วัตถุจะเคลื่อนที่มาทางซ้าย และในรูปที่ 1b วัตถุผ่านตำแหน่ง x = 0 หรือตำแหน่งสมดุลซึ่งตำแหน่งนี้ แรงที่สปริงกระทำต่อวัตถุจะเป็นศูนย์ แต่อัตราเร็วของวัตถุจะมากที่สุด โดยทิศของความเร็วจะเป็นจากขวาไปซ้าย หรือความเร็วเป็นลบ เนื่องจากพื้นไม่มีแรงเสียดทาน และสปริงก็ไม่ออกแรงมากกระทำต่อวัตถุ ดังนั้นที่ตำแหน่ง x = 0 นี้ วัตถุจึงสามารถรักษาสภาพการเคลื่อนที่ตามกฎข้อที่ 1 ของนิวตันไว้ได้ วัตถุจึงยังคงสามารถเคลื่อนที่ต่อไปทางซ้ายได้
ในขณะที่วัตถุเคลื่อนที่ไปทางซ้ายนั้น วัตถุก็จะผลักให้สปริงหดสั้นไปจากความยาวเดิมด้วย ดังนั้นสปริงจะพยายามออกแรงดึงกลับไปกระทำต่อวัตถุ เพื่อให้ตัวเองกลับไปสู่ความยาวปกติอีก จนในรูปที่ 1 C แสดงถึงขณะที่วัตถุเคลื่อนที่ไปทางซ้ายมากที่สุด ความเร็วของวัตถุจะเป็นศูนย์ทิศของแรงดึงกลับจากซ้ายไปขวา หรือเป็นบวก เวกเตอร์ของการขจัดของวัตถุมีทิศจากขวาไปซ้าย และมีขนาดเป็น A ดังนั้นตำแหน่งของวัตถุขณะนี้จึงเป็น x = -A มีข้อน่าสังเกตว่า ขนาดของการขจัดมากที่สุดของวัตถุไม่ว่าจะเป็นทางซ้ายหรือขวาจะเท่ากัน คือเป็น a เนื่องจากในรูป 1c นี้มีแรงมากระทำต่อวัตถุเพียงแรงเดียว คือแรงจากสปริง ซึ่งมีทิศไปทางขวา วัตถุจึงเคลื่อนที่กลับไปทางขวาด้วยอิทธิพลของแรงนี้
รูปที่ 1
ในรูป 1d วัตถุกลับมาที่ตำแหน่งสมดุลของสปริงอีกครั้งหนึ่ง เช่นเดียวกับในรูป 1b แต่ในขณะนี้วัตถุมีความเร็วเป็นบวก หรือไปทางขวาวัตถุจึงยืดสปริงออกไป โดยยืดได้มากที่สุดถึงตำแหน่ง x = A ดังแสดงในรูป 1 e ซึ่งเป็นสถานเดียวกับรูป 1a ดังนั้นการเคลื่อนที่ของวัตถุจึงกลับมาในลักษณะเดิม คือจาก 1a 1b 1c 1d 1e 1a เป็นอย่างนี้เรื่อยไป ซึ่งจะเห็นว่าวัตถุมีการเคลื่อนที่กลับไปมาซ้ำของเดิม จึงเป็นการเคลื่อนที่แบบ SHM. มีข้อพึงระลึก จากสมการที่ (1) หรือ F = -kx ว่า วัตถุที่เคลื่อนที่แบบ SHM นั้น นอกจากจะเคลื่อนที่กลับไปมาซ้ำรอยเดิมแล้ว แรงดึงกลับที่กระทำต่อวัตถุยังแปรผันโดยตรงกับการขจัดของวัตถุอีกด้วย
ในการศึกษาการเคลื่อนที่แบบ SHM นี้ จะต้องกำหนดปริมาณต่าง ๆ ดังต่อไปนี้
การขจัด (dis placement) คือระยะทางที่วัตถุเคลื่อนที่ไปได้โดยนับจากจุดสมดุล
อัมปลิจูด (amplitude) คือระยะทางมากที่สุดที่วัตถุจะสามารถเคลื่อนที่ไปได้ โดยนับจากจุดสมดุลเช่นเดียวกัน อาจจะพิจารณาได้ว่าอัมปลิจูด ก็คือการขจัดมากที่สุดนั่นเอง
คาบ (period) คือเวลาที่วัตถุใช้ในการสั่น 1 รอบ (เช่นจากรูป 1a ถึง 1e
ความถี่ (frequency) คือจำนวนรอบที่วัตถุสั่น หรือเคลื่อนที่ได้ใน 1 วินาที จากนิยามเหล่านี้ ถ้า f เป็นความถี่ และ T เป็นคาบ จะได้ว่า
T =
พลังงานของวัตถุที่เคลื่อนที่แบบ SHM.
ในการยืดหรือหดสปริง จะต้องมีแรงภายนอกไปกระทำต่อสปริงทำให้เกิดงานขึ้น ทั้งนี้เพราะในการยืดหรือหดของสปริงนั้น พลังงานศักย์ ของสปริงจะเพิ่มขึ้น จากนิยามของพลังงานศักย์ที่ว่า "พลังงานศักย์ของวัตถุ ณ จุดใด คืองานที่ใช้ในการเคลื่อนที่วัตถุจากจุดอ้างอิงไปยังจุดนั้น" ถ้า F เป็นแรงที่กระทำต่อสปริงแล้วทำให้สปริงยืด (หรือหด) เป็นระยะทาง x จากตำแหน่งสมดุล จะได้ว่า
งานที่ทำต่อสปริง = Fx
ถ้าให้ตำแหน่งสมดุลเป็นตำแหน่งอ้างอิง จะได้ว่า
พลังงานศักย์ของสปริงที่ตำแหน่ง x ใด ๆ = Fx
แต่ในการยืดหรือหดของสปริงนี้ แรงที่กระทำต่อสปริงจะไม่คงที่ โดยจะขึ้นกับระยะทาง ดังนั้นแรง F จึงเป็นแรงเฉลี่ย โดยจะเฉลี่ยระหว่างแรงที่กระทำต่อสปริงที่ตำแหน่ง x = 0 และที่ x ใด
นั่นคือ
ดังนั้น พลังงานศักย์ของสปริงที่ตำแหน่ง x ใด ๆ
เนื่องจาก แรงที่สปริงกระทำต่อวัตถุเป็นแรงอนุรักษ์ ดังนั้นพลังงานทั้งหมด (total energy) ของวัตถุที่เคลื่อนที่ภายใต้อิทธิพลของแรงสปริงจึงคงที่ ถ้า E เป็นค่าพลังงานทั้งหมดนี้ จะได้ว่า ที่ตำแหน่ง x ใด ๆ ซึ่งวัตถุมีความเร็วเป็น v ใด ๆ (ดังแสดงในรูป 2d) จะได้ว่า
รูปที่ 2
ในรูปที่ 2 แสดงการเคลื่อนที่ของวัตถุมวล m ที่ผูกติดกับสปริงเคลื่อนที่บนพื้นราบที่ไม่มีแรงเสียดทาน เช่นเดียวกับในรูปที่ 1 ในรูป a วัตถุอยู่ในตำแหน่ง x = A ซึ่งเป็นค่าอัมปลิจูดของการเคลื่อนที่ ณ ตำแหน่งนี้ วัตถุมีความเร็วเป็นศูนย์ จึงมีแต่พลังงานศักย์ซึ่งมีค่ามากที่สุด
ในรูป b วัตถุอยู่ในตำแหน่งสมดุล การขจัด x เป็นศูนย์ แต่มีอัตราเร็วมากที่สุด ที่ตำแหน่งนี้จึงมีพลังงานศักย์เป็นศูนย์ แต่มีพลังงานจลน์มากที่สุด ถ้า v0 เป็นอัตราเร็วที่ตำแหน่งนี้จะได้ว่า
ในรูป c วัตถุอยู่ในตำแหน่ง x = - A ซึ่งก็เป็นอัมปลิจูดเช่นเดียวกันและเหมือนกับในรูป a ความเร็วของวัตถุเป็นศูนย์ วัตถุจึงมีพลังงานจลน์เป็นศูนย์ ในขณะที่มีพลังงานศักย์มากที่สุด
รูป d เป็นตำแหน่งของวัตถุที่ x ใด ๆ วัตถุมีความเร็วเป็น v ใด ๆ ดังที่ได้อธิบายไว้แล้ว จึงได้
 
ที่มา: http://web.ku.ac.th/schoolnet/snet3/supinya/harmonic-mot/harmonic.htm










ตอบ 2
อธิบาย    พิจารณาลูกตุ้มที่ผูกติดกับเชือกเบา แล้วแกว่งไปมาในแนวดิ่งในทำนองเดียวกับการแกว่งของลูกตุ้มนาฬิกา โดยกำหนดให้
m เป็นมวลของลูกตุ้ม
L เป็นความยาวของเส้นเชือก
Q เป็นมุมที่เส้นเชือกทำกับแนวดิ่ง
จากรูปจะเห็นว่าในขณะที่ลูกตุ้มอยู่ในแนว กับแนวดิ่ง การขจัดจะเป็น x ซึ่งถ้า เป็นมุมเล็ก ๆ จะได้ว่า x = L ดังนั้นการขจัดของวัตถุอาจจะเขียนได้ว่าเป็น x หรือเป็น ก็ได้ เมื่อพิจารณาแรงน้ำหนัก mg ของลูกตุ้ม ก็สามารถแตกแรงนี้ออกเป็น 2 ส่วน คือ mgcos อยู่ในแนวเดียวกับเส้นเชือก และ mg sin ซึ่งอยู่ในแนวเส้นสัมผัส แรง mg sin นี่เองที่เป็นแรงดึงกลับที่กระทำต่อลูกตุ้ม
นั่นคือ แรงดึงกลับ = F = mg sin
ในขณะที่ ระยะทางของวัตถุ = x = LQ
ดังนั้น แรงดึงกลับจึงไม่แปรผันโดยตรงกับระยะทาง การแกว่งของลูกตุ้มนาฬิกาไม่น่าเป็น SHM แต่ถ้ามุม มีค่าน้อย ๆ จะได้ว่าในหน่วยเรเดีย
sin =
ดังนั้น แรงดึงกลับ = F = mg
ระยะทาง = x = LQ
จึงได้ว่า แรงดึงกลับเป็นสัดส่วนโดยตรงกับระยะทางแล้ว
นั่นคือ การแกว่งของลูกตุ้มนาฬิกาที่มีมุม น้อย ๆ จึงเป็น SHM
พิจารณาแรงดึงกลับ
F = mg
จากรูป เมื่อ น้อย ๆ จะได้
=
ดังนั้น F = mg
จากกฎข้อ 2 ของนิวตัน
F = ma
ดังนั้น ความเร่งของตุ้มนาฬิกา = a =
เนื่องจากการเคลื่อนที่ของลูกตุ้มเป็น SHM
ดังนั้น a = 2x
นั่นคือ 2x = g
หรือ 2 =
=
โดย w เป็นความถี่เชิงมุม (angular frequency) = 2f
ดังนั้น = 2f =
f = = ความถึ่ของการแกว่งของลูกตุ้ม
T = = 2 = คาบของการแกว่งของลูกตุ้ม
ที่มา: http://web.ku.ac.th/schoolnet/snet3/supinya/harmonic-pen/pendulum.htm












ตอบ 4
อธิบาย พอมีความเที่ยงตรงพอสมควร สำหรับการทำงานในระบบ ความถี่ต่ำ เภทที่ใช้ความถี่ต่ำในระบบที่ใช้ไฟ 50 หรือ 60 Hz (พวกมอเตอร์ทั้งหลาย)

การเพิ่มหรือลดกำลังไฟฟ้าเข้าสู่ระบบจะมีทั้งการเพิ่มแรงดัน ด้วยการเพิ่ม Exciter และ เพิ่มความเร็วรอบ โดยเพิ่มรอบให้ไฟออกมากขึ้น ซึ่งจะจ่ายไฟจากตัวนั้นมากขึ้นแต่ความถี่ก็จะสูงขึ้น หากมีเครื่องกำเนิดไฟฟ้าเพียง 2 ตัว การถ่ายโหลด ที่จะทำให้ความถี่ไม่เปลียน

คือเร่งความเร็วตัวที่จะเอาไปแทนขึ้น ขณะเดียวกับลดความเร็วของตัวที่จะปลดออก ลง ความถี่จึงจะยังคงที่

ในระบบใหญ่ๆก็คงเป็นลักษณะเดียวกัน แต่เครื่องกำเนิดอยู่คนละแห่งในการทำให้สำพันธ์กันจึงไม่ใช่ง่ายนัก

และยังขึ้นกับจำนวนภาระ (Load) ที่ใช้ไฟอยู่ด้วย หากมีการเปลียนแปลงภาระมากๆในเวลาเดียวกัน ก็จะทำให้ความถี่ตกลงไปด้วย



ในห้องควบคุมจะมีนาฬิกาสองเรือนที่เดินด้วยมอเตอร์แบบความเร็วคงที่(เปลี่ยนตามความถี่)เรือนหนึ่ง

และเดินด้วยแร่ Crytal ที่เที่ยงตรงกว่าและจะคอยปรับความถี่ของระบบให้นาฬิกาสองเรือนเดินตรงกัน ไม่ให้ผิดแม้แต่เสี้ยวของวินาที

ทำให้ค่าเฉลี่ยของระบบในระยะยาวๆเที่ยงตรง ใช้ได้ เสมอ



สรุปคงไม่ดีพอที่จะไปใช้สอบเทียบกับเครื่องมือที่ใช้ความถี่ สูงๆได้

เพราะ +/- 0.01 % ของ 50 Hz ก็เพียง เล็กน้อยเท่านั้น แต่หาก 0.01 % ของความถี่สูง เช่น 5 ล้าน Hz ก็คงมากโขอยู่
23060
ที่มา: http://www.vcharkarn.com/include/vcafe/showkratoo.php?Pid=31704









ตอบ 3
อธิบาย การเคลื่อนที่แบบโพรเจกไทล์         คือการเคลื่อนที่ในแนวโค้งพาราโบลา ซึ่งเกิดจากวัตถุได้รับความเร็วใน 2 แนวพร้อมกัน คือ ความเร็วในแนวราบและความเร็วในแนวดิ่ง ตัวอย่างของการเคลื่อนที่แบบโพรเจกไทล์  ได้แก่ ดอกไม้ไฟ น้ำพุ การเคลื่อนที่ของลูกบอลที่ถูกเตะขึ้นจากพื้น การเคลื่อนที่ของนักกระโดดไกล    สำหรับในบทเรียนนี้เราจะศึกษาในเรื่องลักษณะของการเคลื่อนที่แบบโพรเจกไทล์ การคำนวณหาปริมาณที่เกี่ยวข้องกับการเคลื่อนที่แบบโพรเจคไทด์ , โพรเจคไทด์ในแนวราบ ,  โพรเจกไทล์ในแนวดิ่ง หลังจากนั้นนักเรียนจะได้ทดสอบความเข้าใจกับแบบฝีกหัด และแบบทดสอบ
ที่มา: http://www.rmutphysics.com/physics/oldfront/circular-motion/projectile/pro1.htm









ตอบ 3
อธิบาย กรณีที่วัตถุเคลื่อนที่อัตราเร็วที่ไม่สม่ำเสมอ หรือความเร็วไม่สม่ำเสมอ วัตถุมีค่าความเร่ง    
ความหมายของอัตราเร่งหรือความเร่ง คือ อัตราเร็วหรือ ความเร็วที่เปลี่ยนไปในหนึ่งหน่วยเวลาที่วัตถุมีการเคลื่อนที่
               การคำนวณหาค่าอัตราเร่ง ทำได้โดยหาอัตราเร็วที่เปลี่ยนไปโดยใช้อัตราเร็วสุดท้ายของการเคลื่อนที่ลบด้วยอัตราเร็วเริ่มต้นของการเคลื่อนที่ หารด้วยเวลาที่ใช้เปลี่ยนค่าอัตราเร็วนั้น เช่น
               กำหนดให้        เป็นอัตราเร็วเริ่มต้นของการเคลื่อนที่
                                       เป็นอัตราเร็วสุดท้ายของการเคลื่อนที่
                                      เป็นเวลาขณะที่เริ่มต้นการเคลื่อนที่
                                      เป็นเวลาในช่วงสุดท้ายของการเคลื่อนที
                                       เป็นค่าอัตราเร่งของการเคลื่อนที่
                สมการแสดงความสัมพันธ์ คือ
                         หรือ                                  ถ้า  คือ ช่วงเวลาที่มีการเปลี่ยนค่าอัตราเร็ว   (สมการที่ 2)
               สำหรับสูตรในการคำนวณหาค่าความเร่ง  ใช้สูตรเดียวกัน เพียงแต่ค่าความเร็วที่เปลี่ยนไปเป็นปริมาณสเกลลาร์








ตอบ 3
อธิบาย      อัตราส่วนระหว่างระยะทางทั้งหมดที่วัตถุเคลื่อนที่ไปกับช่วงเวลาที่ใช้ในการเคลื่อนที่ 
 ถ้าเวลาที่ใช้น้อยมาก เข้าใกล้ศูนย์ อัตราเร็วเฉลี่ยจะเท่ากับอัตราเร็วขณะใดขณะหนึ่ง











ตอบ 4
อธิบาย การค้นพบประจุไฟฟ้านั้นสามารถสืบย้อนกลับไปได้ถึงยุคกรีกโบราณ โดยในช่วง 600 ปีก่อนคริสต์ศักราช เทลีส แห่งไมเลตัส นักปราชญ์ชาวกรีก ได้กล่าวถึงการสะสมของประจุไฟฟ้าจากการขัดถูวัสดุหลายชนิด เช่น อำพัน กับ ผ้าขนสัตว์ วัสดุที่สะสมประจุเหล่านี้สามารถดึงดูดวัตถุที่มีน้ำหนักเบา เช่น เส้นผม ได้ ยิ่งไปกว่านั้น หากวัสดุเหล่านี้ถูกขัดถูเป็นเวลานานพอ จะทำให้เกิดประกายไฟ ซึ่งเป็นปรากฏการณ์ที่เกิดจาก ไฟฟ้าจากการขัดถู (triboelectric effect) คำภาษาอังกฤษ electricity มาจากคำในภาษากรีก ηλεκτρον (electron) ซึ่งหมายถึง อำพัน
ในปี ค.ศ. 1733
ดูเฟย์ (C. F. Du Fay) ได้เสนอ [1] ว่าไฟฟ้านั้นมีอยู่ 2 ชนิดซึ่งหักล้างกัน โดยนำเสนอในรูปทฤษฎีของของไหลสองชนิด เขาได้เสนอว่าเมื่อถูแก้วกับผ้าไหม แก้วจะมีประจุที่เรียกว่า ไฟฟ้าวิเทรียส (vitreous electricity) ส่วนเมื่อถูอำพันกับผ้าขนสัตว์ อำพันจะมีประจุที่เรียกว่า ไฟฟ้าเรซินัส (resinous electricity)
ต่อมาในช่วงคริสต์ศตวรรษที่ 18 การศึกษาเกี่ยวกับไฟฟ้านั้นเริ่มแพร่หลายมากขึ้น โดยที่
เบนจามิน แฟรงกลิน ซึ่งเป็นหนึ่งในผู้เชี่ยวชาญในยุคนั้นไม่เห็นด้วยกับทฤษฎีของไหลสองชนิด เขาได้ตั้งข้อโต้แย้งให้การสนับสนุน ทฤษฎีของไหลชนิดเดียว โดยจินตนาการไฟฟ้าเป็นเสมือนของไหลที่ไม่สามารถมองเห็นได้ และมีอยู่ในสสารทุกชนิด เช่น ในกรณีของ ไหไลเดน (Leyden jar) นั้น เนื้อแก้วเป็นส่วนที่เก็บสะสมประจุ เขาได้ตั้งสมมุติฐานว่า การขัดถูผิวของวัตถุฉนวนต่างชนิด ทำให้ของไหลที่ว่านี้เกิดการไหลเปลี่ยนตำแหน่งเกิดเป็นกระแสไฟฟ้า นอกจากนั้นแล้วเขายังได้ตั้งสมมุติฐานว่า หากวัตถุมีของเหลวนี้น้อยเกินไปจะทำให้มีค่าประจุเป็นลบ ถ้าหากมีมากเกินไปจะมีค่าประจุเป็นบวก ด้วยเหตุผลที่ไม่เป็นที่แน่ชัด แฟรงกลินได้ ระบุว่า ค่าประจุบวก คือ ไฟฟ้าวิเทรียส และ ค่าประจุลบ คือ ไฟฟ้าเรซินัส ซึ่ง วิลเลียม วัตสันก็ได้ค้นพบข้อสรุปเดียวกันนี้ในช่วงเวลาที่ใกล้เคียงกัน
แบบจำลองของ แฟรงกลินและวัตสัน นั้นใกล้เคียงกับแบบจำลองในปัจจุบันซึ่งมีความซับซ้อนมากกว่า ในปัจจุบันเราทราบว่าสสารนั้นจริงๆ แล้วประกอบด้วยอนุภาคที่มีประจุอยู่หลายชนิด เช่น โปรตอน และ อิเล็กตรอน และ
กระแสไฟฟ้านั้นก็เกิดได้หลายแบบ เช่น เกิดจากการไหลของอิเล็กตรอน เกิดจากการไหลของสิ่งที่เรียกว่า "โฮล" (ของอิเล็กตรอน) ซึ่งทำตัวเสมือนประจุบวก และในสารละลายอิเล็กโตรไลท์นั้น เกิดจากการไหลของอนุภาคที่เรียกว่า อิออน สองชนิดคือ อิออนบวก และ อิออนลบ เพื่อความสะดวกในการทำงาน ผู้ที่ทำงานเกี่ยวกับไฟฟ้าในปัจจุบันนั้นก็ยังใช้แบบจำลองกระแสไฟฟ้าของแฟรงกลิน โดยจำลองกระแสไฟฟ้าเป็นการไหลของประจุบวกเท่านั้น (เรียกว่า กระแสแบบดั้งเดิม) ถึงแม้แบบจำลองอย่างง่ายนี้ช่วยลดความซับซ้อนในการทำความเข้าใจหลักการทางไฟฟ้า และ การคำนวณ ต่างๆ แต่ก็ทำให้มองข้ามข้อเท็จจริงที่ในสารตัวนำบางชนิด (เช่น อิเล็กโตรไลท์ สารกึ่งตัวนำ และ พลาสมา) นั้นมีการไหลของอนุภาคที่มีประจุอยู่หลายประเภท และนอกจากนั้นแล้ว ทิศทางการไหลของกระแสแบบดั้งเดิมนี้ ก็สวนทางกับทิศทางการไหลของอิเล็กตรอนในโลหะซึ่งใช้เป็นตัวนำ ซึ่งทำให้เกิดความสับสนสำหรับผู้เริ่มศึกษาอิเล็กทรอนิกส์

 คุณสมบัติ

นอกจากคุณสมบัติทางแม่เหล็กไฟฟ้าที่กล่าวข้างต้นแล้ว ประจุยังเป็นคุณสมบัติที่ไม่เปลี่ยนแปลงสัมพัทธ์ (ตามทฤษฎีสัมพัทธภาพ) คือ หากอนุภาคมีประจุ q ไม่ว่าประจุนั้นจะเคลื่อนที่ด้วยความเร็วเท่าไร ก็จะยังมีประจุ q คุณสมบัตินี้ได้รับการยืนยันโดยการแสดงให้เห็ว่า ค่าประจุในหนึ่งนิวเคลียสของฮีเลียม (มี 2 โปรตอน และ 2 นิวตรอนในนิวเคลียสของฮีเลียม และเคลื่อนที่ไปมาด้วยความเร็วสูง) มีค่าเท่ากับประจุของนิวเคลียส 2 นิวเคลียสของดิวเทอเรียม (ซึ่งมี โปรตอน และ นิวตรอน อย่างละหนึ่งตัวในนิวเคลียส และ เคลื่อนที่ด้วยความเร็วที่ต่ำกว่าที่อยู่ในนิวเคลียสของฮีเลียมมาก)

 กฎการอนุรักษ์ของประจุ

ประจุทั้งหมดของระบบโดดเดี่ยว (isolated system) มีค่าคงที่เสมอ โดยไม่ขึ้นกับการเปลี่ยนแปลงของประจุภายในระบบ กฎดังกล่าวเป็นจริงในทุกกระบวนการทางฟิสิกส์ และสามารถเขียนในรูปสมการทางคณิตศาสตร์ได้จากสมการของแมกซ์เวลล์ เรียก สมการของความต่อเนื่อง (continuity equation) ซึ่งระบุว่า การเปลี่ยนแปลงรวมของ ความหนาแน่นประจุ (charge density) ρ ในปริมาตรV มีค่าเท่ากับความหนาแน่นกระแส(current density) J รวม ที่ผ่านพื้นผิว S ของปริมาตรนั้น ซึ่งก็คือกระแส I:
- \frac{\partial}{\partial t} \int_V \rho dV = \int_S \mathbf{J} \cdot \mathbf{dS} = I 
ที่มา: http://th.wikipedia.org/wiki/%E0%B8%9B%E0%B8%A3%E0%B8%B0%E0%B8%88%E0%B8%B8%E0%B9%84%E0%B8%9F%E0%B8%9F%E0%B9%89%E0%B8%B2

3 ความคิดเห็น:

  1. ประเมินตนเอง เต็ม 90 คะแนน ให้ 87 คะแนน

    ตอบลบ
  2. รวม 2 คน เต็ม 180 คะแนน ได้ 176.5 คะแนน
    หาร 2 เต็ม 90 คะแนน ได้ 88.25

    ตอบลบ